A Goal Programming-Based Methodology for Machine Learning Model Selection Decisions: A Predictive Maintenance Application

Author:

Mallidis Ioannis,Yakavenka Volha,Konstantinidis Anastasios,Sariannidis Nikolaos

Abstract

The paper develops a goal programming-based multi-criteria methodology, for assessing different machine learning (ML) regression models under accuracy and time efficiency criteria. The developed methodology provides users with high flexibility in assessing the models as it allows for a fast and computationally efficient sensitivity analysis of accuracy and time significance weights as well as accuracy and time significance threshold values. Four regression models were assessed, namely the decision tree, random forest, support vector and the neural network. The developed methodology was employed to forecast the time to failures of NASA Turbofans. The results reveal that decision tree regression (DTR) seems to be preferred for low values of accuracy weights (up to 30%) and low accuracy and time efficiency threshold values. As the accuracy weights tend to increase and for higher accuracy and time efficiency threshold values, random forest regression (RFR) seems to be the best choice. The preference for the RFR model however, seems to change towards the adoption of the neural network for accuracy weights equal to and higher than 90%.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3