Climate Change Impacts on the Water Resources and Vegetation Dynamics of a Forested Sardinian Basin through a Distributed Ecohydrological Model

Author:

Sirigu SerenaORCID,Montaldo Nicola

Abstract

Climate change is impacting Mediterranean basins, bringing warmer climate conditions. The Marganai forest is a natural forest protected under the European Site of Community Importance (Natura 2000), located in Sardinia, an island in the western Mediterranean basin, which is part of the Fluminimaggiore basin. Recent droughts have strained the forest′s resilience. A long-term hydrological database collected from 1922 to 2021 shows that the Sardinian forested basin has been affected by climate change since the middle of the last century, associated with a decrease in winter precipitation and annual runoff, reduced by half in the last century, and an increase of ~1 °C in the mean annual air temperature. A simplified model that couples a hydrological model and a vegetation dynamics model for long-term ecohydrological predictions in water-limited basins is proposed. The model well predicted almost one century of runoff observations. Trees have suffered from the recent warmer climate conditions, with a tree leaf area index (LAI) decreasing systematically due to the air temperature and a vapor pressure deficit (VPD) rise at a rate of 0.1 hPa per decade. Future climate scenarios of the HadGEM2-AO climate model are predicting even warmer conditions in the Sardinian forested basin, with less annual precipitation and higher air temperatures and VPD. Using these climate scenarios, we predicted a further decrease in runoff and tree transpiration and LAI in the basin, with a reduction of tree LAI by half in the next century. Although the annual runoff decreases drastically in the worst scenarios (up to 26%), runoff extremes will increase in severity, outlining future scenarios that are drier and warmer but, at the same time, with an increased flood frequency. The future climate conditions undermine the forest’s sustainability and need to be properly considered in water resources and forest management plans.

Funder

Ministry of Education, Universities and Research

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3