Effects of Different Materials on Biogas Production during Anaerobic Digestion of Food Waste

Author:

Dompara Iliana1,Maragkaki Angeliki1,Papastefanakis Nikolaos1,Floraki Christina2,Vernardou Dimitra2ORCID,Manios Thrassyvoulos1

Affiliation:

1. Department of Agriculture, School of Agricultural Science, Hellenic Mediterranean University, 71401 Crete, Greece

2. Department of Electrical and Computer Engineering, School of Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece

Abstract

One of the best methods for turning different types of biomass into clean energy is anaerobic digestion (AD). Organic and inorganic additives may be employed in the AD process to increase biogas output. It has been demonstrated that inorganic additives, such as micronutrients, can improve the efficiency of biogas producing reactors. These trace items can be introduced to the AD process as powders. The use of metal oxides in engineering and environmental research has become more popular. This study focuses on the role of TiO2 and ZnO/Ag powders on anaerobic digestion. Food waste studies on biochemical methane potential were performed with and without TiO2 and ZnO/Ag powders to examine their impact on AD. All powders are grown through the hydrothermal procedure, which has proved to be environmentally friendly and low in cost, presenting the capability to simply control the materials’ characteristics at mild temperatures. The addition of ZnO/Ag and TiO2 improved the biogas cumulative yield by 12 and 44%, respectively, compared to the control reactor. In addition, volatile solids (VS) removal efficiency increased by 5.7% in the food wastes (FW) and TiO2 reactor, while total chemical oxygen demand (TCOD) removal efficiency increased by 22% after the addition of ZnO/Ag.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3