Fault-Tolerant Path-Embedding of Twisted Hypercube-Like Networks (THLNs)

Author:

Zhang Huifeng,Xu XirongORCID,Zhang Qiang,Yang Yuansheng

Abstract

It is known widely that an interconnection network can be denoted by a graph G = ( V , E ) , where V denotes the vertex set and E denotes the edge set. Investigating structures of G is necessary to design a suitable topological structure of interconnection network. One of the critical issues in evaluating an interconnection network is graph embedding, which concerns whether a host graph contains a guest graph as its subgraph. Linear arrays (i.e., paths) and rings (i.e., cycles) are two ordinary guest graphs (or basic networks) for parallel and distributed computation. In the process of large-scale interconnection network operation, it is inevitable that various errors may occur at nodes and edges. It is significant to find an embedding of a guest graph into a host graph where all faulty nodes and edges have been removed. This is named as fault-tolerant embedding. The twisted hypercube-like networks ( T H L N s ) contain several important hypercube variants. This paper is concerned with the fault-tolerant path-embedding of n-dimensional (n-D) T H L N s . Let G n be an n-D T H L N and F be a subset of V ( G n ) ∪ E ( G n ) with | F | ≤ n - 2 . We show that for two different arbitrary correct vertices u and v, there is a faultless path P u v of every length l with 2 n - 1 - 1 ≤ l ≤ 2 n - f v - 1 - α , where α = 0 if vertices u and v form a normal vertex-pair and α = 1 if vertices u and v form a weak vertex-pair in G n - F ( n ≥ 5 ).

Funder

National Natural Science Foundation of China

Natural Science Foundation of Liaoning Province

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference43 articles.

1. An Introduction to Parallel Processing: Algorithms and Architectures;Parhami,1999

2. Hypercube supercomputers

3. Hypercubes and Distributed Computers;Andre,1989

4. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes;Leighton,1991

5. Counting Ten Data Center Network Topologieshttps://searchdatacenter.techtarget.com.cn/9-20784/

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. (n − 2)-Fault-Tolerant Edge-Pancyclicity of Crossed Cubes CQn;International Journal of Foundations of Computer Science;2021-01-25

2. ($ 2n-3 $)-fault-tolerant Hamiltonian connectivity of augmented cubes $ AQ_n $;AIMS Mathematics;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3