An Application of Persistent Scatterer Interferometry (PSI) Technique for Infrastructure Monitoring

Author:

D’Aranno Peppe J. V.,Di Benedetto AlessandroORCID,Fiani MargheritaORCID,Marsella MariaORCID,Moriero Ilaria,Palenzuela Baena José Antonio

Abstract

In the absence of systematic structural monitoring to support adequate maintenance standards, many existing infrastructures may reach unacceptable quality levels during their life cycle, resulting in significant damage and even potential failure. The metropolitan area of the Gulf of Salerno (Italy), served by a complex multimodal transport network connecting the port area to the roads and railways surrounding the urban area, represents an important industrial and commercial hub at the local and international scale. This particular scenario, developed in a complex morphological and geological context, has led to the interference and overlapping of the transport network (highway, railway, main and secondary roads) that run through the piedmont area north of the port. Given the relevance of the area, our research aims to highlight the capabilities of the persistent scatterer interferometry (PSI) technique, belonging to the group of differential interferometric synthetic aperture radar (SAR), to extract space–temporal series of displacements on ground points or artifacts with millimeter accuracy useful to understand ongoing deformation processes. By using archived data from the European Space Agency missions, i.e., ERS1/2 (European remote-sensing satellite) and ENVISAT (environmental satellite), and the most recent data from COSMO-SkyMed constellations, it was possible to collect a 28-year dataset that was used to spatially analyze displacement patterns at a site-specific scale to check the stability of viaducts and embankments, and on a larger scale to understand the activity of the surrounding slopes. Despite the different resolution and subsequently the ground density, the analysis of the different datasets showed a spatiotemporal consistency in the displacement patterns that concerned two subareas showing significant annual velocity trends, one northeast of the city and the second in the port area. The analysis presented in this paper highlights how a complex geologic area, combining slope movements and various fault systems, could be a major concern for the stability of the overlying infrastructure and also the role that a PSI analysis can play in remotely monitoring their behavior over long periods of time.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. "Ankara Batıkent Mesa Bölgesinde Zemin Deformasyon Kontrolü: Metro Hattı Kontrolü;International Journal of Environment and Geoinformatics;2023-09-30

2. Interpretation of archived measurements within PROION project;Ninth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2023);2023-09-21

3. IoT and Deep Learning for Smart Energy Management;Proceedings of Eighth International Congress on Information and Communication Technology;2023-09-01

4. Monitoring and prediction of landslide-related deformation based on the GCN-LSTM algorithm and SAR imagery;Natural Hazards;2023-08-05

5. Data Fusion of InSAR Data for Increasing Ground Deformation Mapping and Spatial Coverage;IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium;2023-07-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3