Determining Long-Term Land Cover Dynamics in the South Baltic Coastal Zone from Historical Aerial Photographs

Author:

Giza AndrzejORCID,Terefenko PawełORCID,Komorowski TomaszORCID,Czapliński PawełORCID

Abstract

Coastal regions are dynamic environments that have been the main settlement destinations for human society development for centuries. Development by humans and environmental changes have resulted in intensive land cover transformation. However, detailed spatiotemporal analyses of such changes in the Polish Baltic coastal zone have not been given sufficient attention. The aim of the presented work is to fill this gap and, moreover, present a method for assessing indicators of changes in a coastal dune environment that could be an alternative for widely used morphological line indicators. To fulfill the main aim, spatial and temporal variations in the dune areas of the Pomeranian Bay coast (South Baltic Sea) were quantified using remote sensing data from the years 1938–2017, supervised classification, and a geographic information system post-classification change detection technique. Finally, a novel quantitative approach for coastal areas containing both sea and land surface sections was developed. The analysis revealed that for accumulative areas, a decrease in the land area occupied by water was typical, along with an increase in the surface area not covered by vegetation and a growth in the surface area occupied by vegetation. Furthermore, stabilized shores were subject to significant changes in tree cover area mainly at the expense of grass-covered terrains and simultaneous slight changes in the surface area occupied by water and the areas free of vegetation. The statistical analysis revealed six groups of characteristic shore evolutionary trends, of which three exhibited an erosive nature of changes. The methodology developed herein helps discover new possibilities for defining coastal zone dynamics and can be used as an alternative solution to methods only resorting to cross sections and line indicators. These results constitute an important step toward developing a predictive model of coastal land cover changes.

Funder

Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3