Mapping China’s Electronic Power Consumption Using Points of Interest and Remote Sensing Data

Author:

Jin ChengORCID,Zhang Yili,Yang XuchaoORCID,Zhao NaizhuoORCID,Ouyang Zutao,Yue WenzeORCID

Abstract

Producing gridded electric power consumption (EPC) maps at a fine geographic scale is critical for rational deployment and effective utilization of electric power resources. Brightness of nighttime light (NTL) has been extensively adopted to evaluate the spatial patterns of EPC at multiple geographical scales. However, the blooming effect and saturation issue of NTL imagery limit its ability to accurately map EPC. Moreover, limited sectoral separation in applying NTL leads to the inaccurate spatial distribution of EPC, particularly in the case of industrial EPC, which is often a dominant portion of the total EPC in China. This study pioneers the separate estimation of spatial patterns of industrial and nonindustrial EPC over mainland China by jointly using points of interest (POIs) and multiple remotely sensed data in a random forests (RF) model. The POIs provided fine and detailed information about the different socioeconomic activities and played a significant role in determining industrial and nonindustrial EPC distribution. Based on the RF model, we produced industrial, non-industrial, and overall EPC maps at a 1 km resolution in mainland China for 2011. Compared against statistical data at the county level, our results showed a high accuracy (R2 = 0.958 for nonindustrial EPC estimation, 0.848 for industrial EPC estimation, and 0.913 for total EPC). This study indicated that the proposed RF-based method, integrating POIs and multiple remote sensing data, can markedly improve the accuracy for estimating EPC. This study also revealed the great potential of POIs in mapping the distribution of socioeconomic parameters.

Funder

the the Second Tibetan Plateau Scientific Expedition and Research program

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3