Abstract
Producing gridded electric power consumption (EPC) maps at a fine geographic scale is critical for rational deployment and effective utilization of electric power resources. Brightness of nighttime light (NTL) has been extensively adopted to evaluate the spatial patterns of EPC at multiple geographical scales. However, the blooming effect and saturation issue of NTL imagery limit its ability to accurately map EPC. Moreover, limited sectoral separation in applying NTL leads to the inaccurate spatial distribution of EPC, particularly in the case of industrial EPC, which is often a dominant portion of the total EPC in China. This study pioneers the separate estimation of spatial patterns of industrial and nonindustrial EPC over mainland China by jointly using points of interest (POIs) and multiple remotely sensed data in a random forests (RF) model. The POIs provided fine and detailed information about the different socioeconomic activities and played a significant role in determining industrial and nonindustrial EPC distribution. Based on the RF model, we produced industrial, non-industrial, and overall EPC maps at a 1 km resolution in mainland China for 2011. Compared against statistical data at the county level, our results showed a high accuracy (R2 = 0.958 for nonindustrial EPC estimation, 0.848 for industrial EPC estimation, and 0.913 for total EPC). This study indicated that the proposed RF-based method, integrating POIs and multiple remote sensing data, can markedly improve the accuracy for estimating EPC. This study also revealed the great potential of POIs in mapping the distribution of socioeconomic parameters.
Funder
the the Second Tibetan Plateau Scientific Expedition and Research program
the National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献