GACN: Generative Adversarial Classified Network for Balancing Plant Disease Dataset and Plant Disease Recognition

Author:

Wang Xiaotian12,Cao Weiqun12

Affiliation:

1. School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China

2. Engineering Research Center for Forestry-Oriented Intelligent Information Processing of National Forestry and Grassland Administration, Beijing 100083, China

Abstract

Plant diseases are a critical threat to the agricultural sector. Therefore, accurate plant disease classification is important. In recent years, some researchers have used synthetic images of GAN to enhance plant disease recognition accuracy. In this paper, we propose a generative adversarial classified network (GACN) to further improve plant disease recognition accuracy. The GACN comprises a generator, discriminator, and classifier. The proposed model can not only enhance convolutional neural network performance by generating synthetic images to balance plant disease datasets but the GACN classifier can also be directly applied to plant disease recognition tasks. Experimental results on the PlantVillage and AI Challenger 2018 datasets show that the contribution of the proposed method to improve the discriminability of the convolution neural network is greater than that of the label-conditional methods of CGAN, ACGAN, BAGAN, and MFC-GAN. The accuracy of the trained classifier for plant disease recognition is also better than that of the plant disease recognition models studied on public plant disease datasets. In addition, we conducted several experiments to observe the effects of different numbers and resolutions of synthetic images on the discriminability of convolutional neural network.

Funder

Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3