Interpretation and Mapping Tree Crown Diameter Using Spatial Heterogeneity in Relation to the Radiative Transfer Model Extracted from GF-2 Images in Planted Boreal Forest Ecosystems

Author:

Liu Zhaohua123ORCID,Long Jiangping123ORCID,Lin Hui123,Du Kai45,Xu Xiaodong123,Liu Hao123,Yang Peisong123,Zhang Tingchen123ORCID,Ye Zilin123

Affiliation:

1. Research Center of Forestry Remote Sensing & Information Engineering, Central South University of Forestry and Technology, Changsha 410004, China

2. Key Laboratory of Forestry Remote Sensing Based Big Data & Ecological Security for Hunan Province, Changsha 410004, China

3. Key Laboratory of State Forestry Administration on Forest Resources Management and Monitoring in Southern Area, Changsha 410004, China

4. Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation (Ministry of Education), Qinghai Normal University, Xining 810008, China

5. Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China

Abstract

Tree crown diameter (CD) values, relating to the rate of material exchange between the forest and the atmosphere, can be used to evaluate forest biomass and carbon stock. To map tree CD values using meter-level optical remote sensing images, we propose a novel method that interprets the relationships between the spectral reflectance of pixels and the CD. The approach employs the spectral reflectance of pixels in the tree crown to express the diversity of inclination angles of leaves based on the radiative transfer model and the spatial heterogeneity of these pixels. Then, simulated and acquired GF-2 images are applied to verify the relationships between spatial heterogeneity and the tree CD. Meanwhile, filter-based and object-based methods are also employed to extract three types of variables (spectral features, texture features, and spatial heterogeneity). Finally, the tree CD values are mapped by four models (random forest (RF), K-nearest neighbor (K-NN), support vector machine (SVM), and multiple linear regression (MLR)), using three single types of variables and combinations of variables with different strategies. The results imply that the spatial heterogeneity of spectral reflectance is significantly positively correlated with tree CD values and is more sensitive to tree CD values than traditional spectral features and textural features. Furthermore, the ability of spatial heterogeneity to map tree CD values is significantly higher than traditional variable sets after obtaining stable features with appropriate filter window sizes. The results also demonstrate that the accuracy of mapped tree CD values is significantly improved using combined variable sets with different feature extraction methods. For example, in our experiments, the R2 and rRMSE values of the optimal results ranged from 0.60 to 0.66, and from 15.76% to 16.68%, respectively. It is confirmed that spatial heterogeneity with high sensitivity can effectively map tree CD values, and the accuracy of mapping tree CD values can be greatly improved using a combination of spectral features extracted by an object-based method and spatial heterogeneity extracted by a filter-based method.

Funder

National Natural Science Foundation of China

Innovative and Construction special funds of Hunan Province

postgraduate scientific research Innovative project of Hunan province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3