Three-Dimensional Geometry Reconstruction Method from Multi-View ISAR Images Utilizing Deep Learning

Author:

Zhou Zuobang1ORCID,Jin Xiangguo1,Liu Lei1ORCID,Zhou Feng1

Affiliation:

1. Key Laboratory of Electronic Information Countermeasure and Simulation Technology of the Education Ministry of China, Xidian University, Xi’an 710071, China

Abstract

The three-dimensional (3D) geometry reconstruction method utilizing ISAR image sequence energy accumulation (ISEA) shows great performance on triaxial stabilized space targets but fails when there is unknown motion from the target itself. The orthogonal factorization method (OFM) can solve this problem well under certain assumptions. However, due to the sparsity and anisotropy of ISAR images, the extraction and association of feature points become very complicated, resulting in the reconstructed geometry usually being a relatively sparse point cloud. Therefore, combining the advantages of the above methods, an extended factorization framework (EFF) is proposed. First, the instance segmentation method based on deep learning is used for the extraction and association of a number of key points on multi-view ISAR images. Then, the projection vectors between the 3-D geometry of the space target and the multi-view ISAR images are obtained, using the improved factorization method. Finally, the 3D geometry reconstruction problem is transformed into an unconstrained optimization problem and solved via the quantum-behaved particle swarm optimization (QPSO) method. The proposed framework uses discretely observed multi-view range–Doppler ISAR images as an input, which can make full use of the long-term data of space targets from multiple perspectives and which is non-sensitive to movement. Therefore, the proposed framework shows high feasibility in practical applications. Experiments on simulated and measured data show the effectiveness and robustness of the proposed framework.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3