Soil Moisture Inversion Based on Data Augmentation Method Using Multi-Source Remote Sensing Data

Author:

Wang Yinglin123,Zhao Jianhui123ORCID,Guo Zhengwei123,Yang Huijin123,Li Ning123

Affiliation:

1. College of Computer and Information Engineering, Henan University, Kaifeng 475004, China

2. Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng 475004, China

3. Henan Engineering Research Center of Intelligent Technology and Application, Henan University, Kaifeng 475004, China

Abstract

Soil moisture is an important land environment characteristic that connects agriculture, ecology, and hydrology. Surface soil moisture (SSM) prediction can be used to plan irrigation, monitor water quality, manage water resources, and estimate agricultural production. Multi-source remote sensing is a crucial tool for assessing SSM in agricultural areas. The field-measured SSM sample data are required in model building and accuracy assessment of SSM inversion using remote sensing data. When the SSM samples are insufficient, the SSM inversion accuracy is severely affected. An SSM inversion method suitable for a small sample size was proposed. The alpha approximation method was employed to expand the measured SSM samples to offer more training data for SSM inversion models. Then, feature parameters were extracted from Sentinel-1 microwave and Sentinel-2 optical remote sensing data, and optimized using three methods, which were Pearson correlation analysis, random forest (RF), and principal component analysis. Then, three common machine learning models suitable for small sample training, which were RF, support vector regression, and genetic algorithm-back propagation neural network, were built to retrieve SSM. Comparison experiments were carried out between various feature optimization methods and machine learning models. The experimental results showed that after sample augmentation, SSM inversion accuracy was enhanced, and the combination of utilizing RF for feature screening and RF for SSM inversion had a higher accuracy, with a coefficient of determination of 0.7256, a root mean square error of 0.0539 cm3/cm3, and a mean absolute error of 0.0422 cm3/cm3, respectively. The proposed method was finally used to invert the regional SSM of the study area. The inversion results indicated that the proposed method had good performance in regional applications with a small sample size.

Funder

the National Natural Science Foundation of China

the Plan of Science and Technology of Henan Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3