Remote Sensing Analysis of Typhoon-Induced Storm Surges and Sea Surface Cooling in Chinese Coastal Waters

Author:

Li Xiaohui1ORCID,Han Guoqi2ORCID,Yang Jingsong13ORCID,Wang Caixia4ORCID

Affiliation:

1. State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China

2. Fisheries and Oceans Canada, Institute of Ocean Sciences, Sidney, BC V8L 4B2, Canada

3. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China

4. Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China

Abstract

Inthis study, remote sensing measurements were utilized to examine the characteristics of storm surges and sea surface cooling in Chinese coastal waters caused by typhoons. Altimetric data from satellite altimeters were used to determine the magnitude, cross-shelf decaying scale, and propagating speed of storm surges from typhoons. The results were in agreement with estimates obtained from a theoretical model and tide gauge data, showing that the two storm surges propagated as continental shelf waves along the southeastern coast of China. The sea surface cooling, driven by Typhoons 1319Usagi and 1323Fitow, was analyzed using the remote sensing sea surface temperature product, named the global 1 km sea surface temperature (G1SST) dataset, revealing a considerable decrease in the temperature, with the largest decrease reaching 4.5 °C after the passage of 1319Usagi, in line with buoy estimates of 4.6 °C. It was found that 1323Fitow and 1324Danas jointly impacted the southeastern coast of China, resulting in a significant temperature drop of 4.0 °C. Our study shows that incorporating remotely sensed measurements into the study of oceanic responses to typhoons has significant benefits and complements the traditional tide gauge network and buoy data.

Funder

Scientific Research Fund of the Second Institute of Oceanography, Ministry of Natural Resources of China

China Postdoctoral Science Foundation

Postdoctoral research projects in Zhejiang Province

Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3