Vector Road Map Updating from High-Resolution Remote-Sensing Images with the Guidance of Road Intersection Change Detection and Directed Road Tracing

Author:

Sui Haigang1,Zhou Ning1ORCID,Zhou Mingting1ORCID,Ge Liang2

Affiliation:

1. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430072, China

2. Tianjin Institute of Surveying and Mapping Company Limited, No. 9 Changling Road, Liqizhuang, Tianjin 300060, China

Abstract

Updating vector road maps from current remote-sensing images provides fundamental data for applications, such as smart transportation and autonomous driving. Updating historical road vector maps involves verifying unchanged roads, extracting newly built roads, and removing disappeared roads. Prior work extracted roads from a current remote-sensing image to build a new road vector map, yielding inaccurate results and redundant processing procedures. In this paper, we argue that changes in roads are closely related to changes in road intersections. Hence, a novel changed road-intersection-guided vector road map updating framework (VecRoadUpd) is proposed to update road vector maps with high efficiency and accuracy. Road-intersection changes include the detection of newly built or disappeared road junctions and the discovery of road branch changes at each road junction. A CNN-based intersection-detection network (CINet) is adopted to extract road intersections from a current image and an old road vector map to discover newly built or disappeared road junctions. A road branch detection network (RoadBranchNet) is used to detect the direction of road branches for each road junction to find road branch changes. Based on the discovery of direction-changed road branches, the VecRoadUpd framework extracts newly built roads and removes disappeared roads through directed road tracing, thus, updating the whole road vector map. Extensive experiments conducted on the public MUNO21 dataset demonstrate that the proposed VecRoadUpd framework exceeds the comparative methods by 11.01% in pixel-level Qual-improvement and 13.85% in graph-level F1-score.

Funder

Guangxi Science and Technology Major Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3