Simulation of Diffuse Solar Radiation with Tree-Based Evolutionary Hybrid Models and Satellite Data

Author:

Zhao Shuting12,Xiang Youzhen23ORCID,Wu Lifeng1ORCID,Liu Xiaoqiang2,Dong Jianhua4,Zhang Fucang2ORCID,Li Zhijun12,Cui Yaokui5

Affiliation:

1. School of Hydraulic and Ecological Engineering, Nanchang Institute of Technology, Nanchang 330099, China

2. Institute of Water-Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling 712100, China

3. Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas of Ministry of Education, Northwest A&F University, Yangling 712100, China

4. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China

5. Institute of RS and GIS, School of Earth and Space Sciences, Peking University, Beijing 100871, China

Abstract

Diffuse solar radiation (Rd) provides basic data for designing and optimizing solar energy systems. Owing to the notable unavailability in many regions of the world, Rd is traditionally estimated by models through other easily available meteorological factors. However, in the absence of ground weather station data, such models often need to be supplemented according to satellite remote sensing data. The performance of Himawari-7 satellite inversion of Rd was evaluated in the study, and hybrid models were established (XGBoost_DE, XGBoost_FPA, XGBoost_GOA, and XGBoost_GWO), so as to improve the satellite data and achieve a better utilization effect. The meteorological data of 14 Rd stations in mainland China from 2011 to 2015 were used. Four input combinations (L1–L4) and eight input combinations (S1–S8) of meteorological factors corresponding to satellite remote sensing data were used for model simulation, while two optimal combinations (S7 and S8) were selected for cross-station application. The results revealed that the accuracy of Himawari-7 satellite Rd data was low, with RMSE, R2, MAE, and MBE values of 2.498 MJ·m−2·d−1, 0.617, 1.799 MJ·m−2·d−1, and 0.323 MJ·m−2·d−1, respectively. The performance of these coupled models based on satellite data was significantly improved. The RMSE and MAE values increased by 15.5% and 9.4%, respectively, while the R2 value decreased by 10.9 %. Compared with others based on satellite data, the XGBoost_GOA model exhibited optimal performance. The mean values of RMSE, R2, and MAE were 1.63 MJ·m−2·d−1, 0.76 and 1.21 MJ·m−2·d−1, respectively. The XGBoost_GWO model exhibited optimal performance in the cross-station application, and the average RMSE value was reduced by 2.3–10.5% compared with the other models. The meteorological factors input by the models exhibited different levels of significance in different scenarios. Rd_s was the main meteorological parameter that affected the model based on satellite data, while RH exhibited a significant improvement in the XGBoost_FPA and XGBoost_GWO models based on ground weather stations data. Accordingly, the present authors believe that the XGBoost_GOA model has excellent ability for simulating Rd, while the XGBoost_GWO model allows for cross-station simulation of Rd from satellite data.

Funder

Lifeng Wu

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3