Numerical Simulation on the Two-Degree-of-Freedom Flow-Induced Vibration of a Submerged Floating Tunnel under Current

Author:

Wang Guannan1ORCID,Zhang Ningchuan1,Huang Guoxing2,Zhou Zhuowei12ORCID

Affiliation:

1. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China

2. Marine Hydrodynamic Research Facility, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511453, China

Abstract

The submerged floating tunnel (SFT) is a novel form of transportation infrastructure for crossing deeper and wider seas. One of the primary challenges in designing SFTs is understanding their hydrodynamic response to complex environmental loads. In order to investigate the two-degree-of-freedom (2-DOF) flow-induced vibration (FIV) response of SFTs under current, a two-dimensional (2D) numerical model was developed using the Reynolds-averaged Navier–Stokes (RANS) method combined with the fourth-order Runge–Kutta method. The numerical results were validated by comparing them with the existing literature. The study then addressed the effects of coupled vibration and structural parameters, i.e., the mass ratio and natural frequency ratio, on the response and wake pattern of SFTs, numerically. The results indicated that coupled vibration had a significant impact on the SFT response at reduced velocities of Urwx ≥ 4.4. A decrease in mass ratio (m* < 1) notably amplified the 2-DOF vibration amplitudes of SFTs at Urwx ≥ 4.4, particularly for in-line vibration. Similarly, a decrease in natural frequency ratio (Rf < 1) significantly suppressed the in-line vibration of SFTs at Urwx ≥ 2.5. Therefore, for the design of SFTs, careful consideration should be given to the effect of mass ratio and natural frequency ratio on in-line vibration.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3