Numerical Study on Hydrodynamic Performance of a Pitching Hydrofoil with Chordwise and Spanwise Deformation

Author:

Qu Hengliang12,Li Xueyan12,Dong Xiaochen3

Affiliation:

1. School of Hydraulic Engineering, Ludong University, Yantai 264025, China

2. Institute of Coast & Sea-Crossing Engineering, Ludong University, Yantai 264025, China

3. Shandong Provincial Key Laboratory of Ocean Engineering, Ocean University of China, Qingdao 266100, China

Abstract

The hydrofoil plays a crucial role in tidal current energy (TCE) devices, such as horizontal-axis turbines (HATs), vertical-axis turbines (VATs), and oscillating hydrofoils. This study delves into the numerical investigation of passive chordwise and spanwise deformations and the hydrodynamic performance of a deformable hydrofoil. Three-dimensional (3D) coupled fluid–structure interaction (FSI) simulations were conducted using the ANSYS Workbench platform, integrating computational fluid dynamics (CFD) and finite element analysis (FEA). The simulation involved a deformable hydrofoil undergoing pitching motion with varying elastic moduli. The study scrutinizes the impact of elastic modulus on hydrofoil deformation, pressure distribution, flow structure, and hydrodynamic performance. Coefficients of lift, drag, torque, as well as their hysteresis areas and intensities, were defined to assess the hydrodynamic performance. The analysis of the correlation between pressure distribution and deformation elucidates the FSI mechanism. Additionally, the study investigated the 3D effects based on the flow structure around the hydrofoil. Discrepancies in pressure distribution along the spanwise direction result from these 3D effects. Consequently, different chordwise deformations of cross-sections along the spanwise direction were observed, contributing to spanwise deformation. The pressure difference between upper and lower surfaces diminished with increasing deformation. Peak values and fluctuations of lift, drag, and torque decreased. This study provides insights for selecting an appropriate elastic modulus for hydrofoils used in TCE devices.

Funder

Shandong Natural Science Foundation Youth Project

Open Project Program of Shandong Marine Aerospace Equipment Technological Innovation Center

Yantai City Science and Technology Innovation Development Project

Shandong Natural Science Foundation Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3