A Study of Adaptive Threshold Based on the Reconstruction Model for Marine Systems and Their Equipment Failure Warning

Author:

Duan Xuxu1,Gao Zeyu2,Qiao Zhenxing3,Du Taili14ORCID,Zou Yongjiu14ORCID,Zhang Peng14ORCID,Zhang Yuewen14,Sun Peiting1ORCID

Affiliation:

1. Marine Engineering College, Dalian Maritime University, Dalian 116026, China

2. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China

3. Dalian Shipbuilding Industry Co., Ltd., Dalian 116021, China

4. Collaborative Innovation Research Institute of Autonomous Ship, Dalian Maritime University, Dalian 116026, China

Abstract

To achieve the failure warning of marine systems and their equipment (MSAE), the threshold is one of the most prominent issues that should be solved first. In this study, a fusion model based on sparse Bayes and probabilistic statistical methods is applied to determine a new and more accurate adaptive alarm threshold. A multistep relevance vector machine (RVM) model is established to realize the parameter reconstruction in which the internal uncertainties caused by the degradation process and the external uncertainty caused by the loading, environment, and disturbances were considered. Then, a varying moving window (VMW) method is employed to determine the window size and achieve continuous data reconstruction. Further, the model based on Johnson distribution systems is utilized to complete the transformation of the residual parameters and calculate the adaptive threshold. Finally, the proposed adaptive decision threshold is successfully involved in the actual examples of the peak pressure and exhaust temperature of marine diesel engines. The results show that the proposed method can realize the continuous health condition monitoring of MSAE, successfully detect abnormal conditions in advance, achieve an early warning of failure, and reserve sufficient time for decision-making to prevent the occurrence of catastrophic disasters.

Funder

National Key R&D Program of China

Fundamental Research Funds for Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3