Folate-Mediated One-Carbon Metabolism in the Crustacean Copepod Calanus finmarchicus: Identification of Transcripts and Relative Expression across Development

Author:

Ascione Daniela1ORCID,Carotenuto Ylenia1ORCID,Lauritano Chiara2ORCID,Roncalli Vittoria1ORCID

Affiliation:

1. Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy

2. Eco-Sustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Naples, Italy

Abstract

Folate, also known as vitamin B9, plays a crucial role in the one-carbon (1C) metabolism, a conserved pathway from microbes to humans. The 1C metabolism, consisting of the folate and methionine cycles, is essential in many biological processes such as nucleotide and protein biosynthesis, cell proliferation, and embryonic development. Despite its functional role, little is known about the 1C metabolism in crustaceans. As part of an ongoing effort to characterize important pathways in Calanus finmarchicus, the biomass-dominant zooplankton in much of the North Atlantic Ocean, we identified transcripts encoding the 1C metabolism enzymes. Using an in silico workflow consisting of a transcriptome mining, reciprocal blasts, and structural analyses of the deduced proteins, we identified the entire set of enzymes in both cycles. The majority encoded for full-length proteins and clustered with homologs from other species. Stage-specific expression was reported, with several transcripts showing high expression in the naupliar stage (e.g., 10-FTHFD, SHMT2) while some methyltransferases (e.g., BHMT, SHMT, DNMT) were more expressed in adults. Overall, this study provides a set of genes which can be used as potential biomarkers of development and reproduction and can be tested in other zooplankters to assess ocean health status monitoring.

Publisher

MDPI AG

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3