EF-UODA: Underwater Object Detection Based on Enhanced Feature

Author:

Zu Yunqin1,Zhang Lixun1,Li Siqi2,Fan Yuhe1,Liu Qijia1

Affiliation:

1. College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China

2. College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China

Abstract

The ability to detect underwater objects accurately is important in marine environmental engineering. Although many kinds of underwater object detection algorithms with relatively high accuracy have been proposed, they involve a large number of parameters and floating point operations (FLOPs), and often fail to yield satisfactory results in complex underwater environments. In light of the demand for an algorithm with the capability to extract high-quality features in complex underwater environments, we proposed a one-stage object detection algorithm called the enhanced feature-based underwater object detection algorithm (EF-UODA), which was based on the architecture of Next-ViT, the loss function of YOLOv8, and Ultralytics. First, we developed a highly efficient module for convolutions, called efficient multi-scale pointwise convolution (EMPC). Second, we proposed a feature pyramid architecture called the multipath fast fusion-feature pyramid network (M2F-FPN) based on different modes of feature fusion. Finally, we integrated the Next-ViT and the minimum point distance intersection over union loss functions in our proposed algorithm. Specifically, on the URPC2020 dataset, EF-UODA surpasses the state-of-the-art (SOTA) convolution-based object detection algorithm YOLOv8X by 2.9% mean average precision (mAP), and surpasses the SOTA ViT-based object detection algorithm real-time detection transformer (RT-DETR) by 2.1%. Meanwhile, it achieves the lowest FLOPs and parameters. The results of extensive experiments showed that EF-UODA had excellent feature extraction capability, and was adequately balanced in terms of the number of FLOPs and parameters.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3