Machine Learning-Based Anomaly Detection on Seawater Temperature Data with Oversampling

Author:

Kang Hangoo12ORCID,Kim Dongil3ORCID,Lim Sungsu2ORCID

Affiliation:

1. Vessel Operation & Observation Team, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea

2. Department of Computer Science & Engineering, Chungnam National University, Daejeon 34134, Republic of Korea

3. Department of Data Science, Ewha Womans University, Seoul 03760, Republic of Korea

Abstract

This study deals with a method for anomaly detection in seawater temperature data using machine learning methods with oversampling techniques. Data were acquired from 2017 to 2023 using a Conductivity–Temperature–Depth (CTD) system in the Pacific Ocean, Indian Ocean, and Sea of Korea. The seawater temperature data consist of 1414 profiles including 1218 normal and 196 abnormal profiles. This dataset has an imbalance problem in which the amount of abnormal data is insufficient compared to that of normal data. Therefore, we generated abnormal data with oversampling techniques using duplication, uniform random variable, Synthetic Minority Oversampling Technique (SMOTE), and autoencoder (AE) techniques for the balance of data class, and trained Interquartile Range (IQR)-based, one-class support vector machine (OCSVM), and Multi-Layer Perceptron (MLP) models with a balanced dataset for anomaly detection. In the experimental results, the F1 score of the MLP showed the best performance at 0.882 in the combination of learning data, consisting of 30% of the minor data generated by SMOTE. This result is a 71.4%-point improvement over the F1 score of the IQR-based model, which is the baseline of this study, and is 1.3%-point better than the best-performing model among the models without oversampling data.

Funder

Ministry of Oceans and Fisheries Korea

KIOST projects

Korea government

Artificial Intelligence Convergence Innovation Human Resources Development

Publisher

MDPI AG

Reference99 articles.

1. Pörtner, H.-O., Karl, D.M., Boyd, P.W., Cheung, W., Lluch-Cota, S.E., Nojiri, Y., Schmidt, D.N., Zavialov, P.O., Alheit, J., and Aristegui, J. (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

2. Fifteen years of ocean observations with the global Argo array;Riser;Nat. Clim. Chang.,2016

3. Steele, J.H., Thorpe, S.A., and Turekian, K.K. (2009). Encyclopedia of Ocean Sciences: Measurement Techniques, Sensors and Platforms, Elsevier.

4. The underway conductivity–temperature–depth instrument;Rudnick;J. Atmos. Ocean. Technol.,2007

5. A new tow-yo instrument to observe high-resolution coastal phenomena;Masunaga;J. Marine Syst.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3