Computational Study on Influence Factors and Vortical Structures in Static Drift Tests

Author:

Yang Chen1,Zeng Ke1ORCID,Chu Jilong1,Bu Shuxia12,Zhu Zhang1ORCID

Affiliation:

1. China Ship Scientific Research Center, Wuxi 214082, China

2. Taihu Laboratory of Deep-Sea Technological Science, Wuxi 214082, China

Abstract

This paper conducted a computational study on the KCS benchmark model at static drift conditions. At the first instance, the roles played by the grid size, turbulence model, and time step are qualitatively and quantitatively analyzed with the orthogonal experimental method (OEM). After the verification of simulated results compared with experimental data in a Static Oblique Towing Test (OTT), hydrodynamic performance is obtained with the employment of the SST κ-ω turbulence model. The grid size is set as 0.07 m while the time step as 0.01 s. The characteristics of the wake field are illustrated in different forms, such as contours of the free surface, distribution of pressure and hydrodynamic forces, variation of turbulent kinetic energy (TKE), and so on. For a deep insight into the physical mechanisms of the asymmetrical flow field, the Detached Eddy Simulation (DES) method is also utilized to capture vortical structures occurring around the hull, in comparison with results obtained through the Reynolds Averaged Navier Stokes (RANS) model. With the aim of a hydrodynamic derivative estimation or detailed flow characteristics analysis, corresponding selections of the computational method are disparate.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3