Lower Limits of Petrophysical Properties Allowing Natural Gas Accumulation in Marine Sandstones: An Example from the Qiongdongnan Basin, Northern South China Sea

Author:

Li Chao12,Guo Shuai3,Zhou Qianshan12,Xu Chaochao14,Chen Guojun12

Affiliation:

1. Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

2. Key Laboratory of Petroleum Resources Exploration and Evaluation, Lanzhou 730000, China

3. Research Institute of China National Offshore Oil Corporation, Beijing 100028, China

4. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

The lower limits of petrophysical properties for an effective reservoir are among the key parameters for assessing hydrocarbon reserves and are therefore directly related to hydrocarbon exploration and development strategies. However, the lower limits for marine sandstone gas reservoirs are still not clear and the impact factors also remain to be discussed. This study analysed the lower petrophysical property limits of an effective sandstone reservoir in the Qiongdongnan Basin using porosity, permeability and gas testing. The results showed that the lower porosity and permeability limits of effective reservoirs developed in the deltas are 8.9% and 1.2 × 10−3 μm2, respectively, and 11.3% and 4.0 × 10−3 μm2 in the submarine canyons and fans, respectively. Sedimentary facies, sediment transport distance, grain size and burial depth of sandstone significantly influence the lower physical property limits. The lower porosity and permeability limits increase with the increase in sediment transport distance as well as the decrease in sandstone grain size and burial depth. Sediment sources and sedimentary facies determine whether sandstone can become an effective reservoir in the Qiongdongnan Basin. Specifically, the sediment source dramatically influences the petrophysical properties of sandstone. The sandstone sourced from the Red River has higher porosity and permeability, followed by the sandstone sourced from the Hainan Uplift, and the sandstone sourced from the palaeo-uplift within the basin has the lowest porosity and permeability. The feldspar dissolution by CO2 and organic acid is the primary formation mechanism of the effective reservoir in the Lingshui Formation, whereas the dissolution of glauconite is more common in the sandstone reservoirs of the Sanya and Meishan formations.

Funder

Youth Innovation Promotion Association CAS

National Science and Technology Major Project of the Ministry of Science and Technology of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3