Multidecadal Phase Changes in the Thermodynamic State of the System: Ocean–Atmosphere–Continent

Author:

Byshev Vladimir1ORCID,Gusev Anatoly123ORCID,Sidorova Alexandra1ORCID

Affiliation:

1. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow 117997, Russia

2. Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow 119333, Russia

3. Zubov State Oceanographic Institute, Roshydromet, Moscow 119034, Russia

Abstract

The present-day climate (the recent 100–150 years) obviously constitutes the structure of a global intra-system rhythmic process with an individual rhythm of about 60 years. In turn, each of the rhythms is presented by the two climate phases of about 25–35 years characterized by qualitative differences: one phase is relatively continental, while the other is humid. Globality and quasi-synchronism of environmental changes are accompanied by planetary structures: the Global Atmospheric Oscillation (GAO) in the atmosphere and the Multidecadal Oscillation of the Heat content in the Ocean (MOHO) discovered relatively recently. Unexpected and rapid qualitative phase changes in the climate, which first focused attention in the mid-1970s of the last century, were titled “climate shifts”. The revealed features of the present-day climate are of exceptional scientific and practical interest and deserve the development of methods for predicting the timing of the forthcoming climate shift. Arising unexpectedly and accompanied by rapid significant changes, these shifts identified the problem of understanding the nature and establishing the processes and mechanisms causing them. First of all, of interest are phase changes in the thermodynamic state of the climate system components: the ocean, atmosphere, and continents. As a result of the World Ocean (WO) thermohydrodynamics numerical modelling, it is shown that MOHO is localized in the layer of the main thermocline, where the most important elements of the WO circulation are located. The performed study based on observational data allows us to conclude that, during the phase of the WO thermal discharge (1975–1999), the two key systems of currents, the Kuroshio and the Gulf Stream, were under similar thermodynamic conditions.

Funder

Russian Science Foundation

Federal assignment to the Shirshov Institute of Oceanology RAS

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3