Nonlinear Slippage of Tensile Armor Layers of Unbonded Flexible Riser Subjected to Irregular Loads

Author:

Liu Qingsheng1ORCID,Qu Zhongyuan1,Liu Xiaoya1,He Jiawei2,Wang Gang1,Wang Sicong1,Chen Feng1

Affiliation:

1. School of Mechanical and Electric Engineering, Soochow University, Suzhou 215131, China

2. Naval Research Institute (NVRI), Beijing 100161, China

Abstract

The unbonded flexible riser has been increasingly applied in the ocean engineering industry to transport oil and gas resources from the seabed to offshore platforms. The slippage of helical layers, especially the tensile armor layers of unbonded flexible risers, contribute to the nonlinear hysteresis phenomenon, which is a research hotspot and difficulty. In this paper, on the basis of a typical eight-layer unbonded flexible riser model, the nonlinear slippage of a tensile armor layer and the corresponding nonlinear behavior of an unbonded flexible riser subjected to irregular external loads are studied by numerical modeling with detailed cross-sectional properties of the helical layers, and are verified through a theoretical method considering the coupled effect of the external loads on the unbonded flexible riser. Firstly, the balance equation of each layer considering the effect of external loads is established based on functional principles, and the overall theoretical model of the unbonded flexible riser is set up in consideration of the contact between adjacent layers. Secondly, the numerical modeling of each separate layer within the unbonded flexible riser, including the actual geometry of the carcass and pressure armor layer, is established, and solid elements are applied to all the interlayers, thus simulating the nonlinear contact and friction between and within interlayers. Finally, after verification through test data, the behavior of the unbonded flexible riser under the cyclic axial force, torsion, bending moment, and irregular external and internal pressure is studied. The results show that the tensile armor layer can slip under irregular loads. Additionally, some suggestions related to the analysis of unbonded flexible risers under irregular loads are drawn in the end.

Funder

National Natural Science Foundation

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3