Recognition of Abnormal Individuals Based on Lightweight Deep Learning Using Aerial Images in Complex Forest Landscapes: A Case Study of Pine Wood Nematode

Author:

Zhang Zuyi1,Wang Biao12ORCID,Chen Wenwen1,Wu Yanlan123,Qin Jun1,Chen Peng1,Sun Hanlu1,He Ao1

Affiliation:

1. School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China

2. Anhui Geographic Information Intelligent Technology Engineering Research Center, Hefei 230601, China

3. Anhui Engineering Research Center for Geographical Information Intelligent Technology, Hefei 230601, China

Abstract

Individuals with abnormalities are key drivers of subtle stress changes in forest ecosystems. Although remote sensing monitoring and deep learning have been developed for forest ecosystems, they are faced with the complexity of forest landscapes, multiple sources of remote sensing data, high monitoring costs, and complex terrain, which pose significant challenges to automatic identification. Therefore, taking pine nematode disease as an example, this paper proposes D-SCNet, an intelligent monitoring network for abnormal individuals applicable to UAV visible images. In this method, the convolutional block attention model and simplified dense block are introduced to enhance the semantic analysis ability of abnormal individual identification, use multi-level information of abnormal individuals well, enhance feature transfer as well as feature weights between network layers, and selectively focus on abnormal features of individuals while reducing feature redundancy and parameter and improving monitoring accuracy and efficiency. This method uses lightweight deep learning models through weak information sources to achieve rapid monitoring of a large range of abnormal individuals in complex environments. With the advantages of low cost, high efficiency, and simple data sources, it is expected to further enhance the practicality and universality of intelligent monitoring of anomalous individuals by UAV remote sensing.

Funder

National Natural Science Foundation of China

National Natural Science Foundation of Anhui

Science and Technology Major Project of Anhui Province

International Science and Technology Cooperation Special

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3