A Localization Algorithm Based on Global Descriptor and Dynamic Range Search

Author:

Chen Yongzhe1,Wang Gang123,Zhou Wei1,Zhang Tongzhou1,Zhang Hao1ORCID

Affiliation:

1. College of Computer Science and Technology, Jilin University, Changchun 130012, China

2. Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China

3. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130012, China

Abstract

The map-based localization method is considered an effective supplement to the localization under the GNSS-denied environment. However, since the map is constituted by the dispersed keyframes, it sometimes happens that the initial position of the unmanned ground vehicle (UGV) lies between the map keyframes or is not on the mapping trajectory. In both cases, it will be impossible to precisely estimate the pose of the vehicle directly via the relationship between the current frame and the map keyframes, leading to localization failure. In this regard, we propose a localization algorithm based on the global descriptor and dynamic range search (LA-GDADRS). In specific, we first design a global descriptor shift and rotation invariant image (SRI), which improves the rotation invariance and shift invariance by the methods of coordinates removal and de-centralization. Secondly, we design a global localization algorithm for shift and rotation invariant branch-and-bound scan matching (SRI-BBS). It first leverages SRI to obtain an approximate priori position of the unmanned vehicle and then utilizes the similarity between the current frame SRI and the map keyframes SRI to select a dynamic search range around the priori position. Within the search range, we leverage the branch-and-bound scanning matching algorithm to search for a more precise pose. It solves the problem that global localization tends to fail when the priori position is imprecise. Moreover, we introduce a tightly coupled factor graph model and a HD map engine to achieve real-time position tracking and lane-level localization, respectively. Finally, we complete extensive ablation experiments and comparative experiments to validate our methods on the benchmark dataset (KITTI) and the real application scenarios at the campus. Extensive experimental results demonstrate that our algorithm achieves the performance of mainstream localization algorithms.

Funder

Jilin Scientific and Technological Development Program

Exploration Foundation of State Key Laboratory of Automotive Simulation Control

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel global localization algorithm based on ring-wise encoding descriptors;International Conference on Automation Control, Algorithm, and Intelligent Bionics (ACAIB 2023);2023-08-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3