An Unsupervised Saliency-Guided Deep Convolutional Neural Network for Accurate Burn Mapping from Sentinel-1 SAR Data

Author:

Radman Ali1ORCID,Shah-Hosseini Reza1ORCID,Homayouni Saeid2ORCID

Affiliation:

1. School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran 14174-66191, Iran

2. Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, 490 Rue de la Couronne, Quebec City, QC G1K 9A9, Canada

Abstract

SAR data provide sufficient information for burned area detection in any weather condition, making it superior to optical data. In this study, we assess the potential of Sentinel-1 SAR images for precise forest-burned area mapping using deep convolutional neural networks (DCNN). Accurate mapping with DCNN techniques requires high quantity and quality training data. However, labeled ground truth might not be available in many cases or requires professional expertise to generate them via visual interpretation of aerial photography or field visits. To overcome this problem, we proposed an unsupervised method that derives DCNN training data from fuzzy c-means (FCM) clusters with the highest and lowest probability of being burned. Furthermore, a saliency-guided (SG) approach was deployed to reduce false detections and SAR image speckles. This method defines salient regions with a high probability of being burned. These regions are not affected by noise and can improve the model performance. The developed approach based on the SG-FCM-DCNN model was investigated to map the burned area of Rossomanno-Grottascura-Bellia, Italy. This method significantly improved the burn detection ability of non-saliency-guided models. Moreover, the proposed model achieved superior accuracy of 87.67% (i.e., more than 2% improvement) compared to other saliency-guided techniques, including SVM and DNN.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3