Global and Local Graph-Based Difference Image Enhancement for Change Detection

Author:

Zheng Xiaolong1,Guan Dongdong1,Li Bangjie1,Chen Zhengsheng1,Pan Lefei1

Affiliation:

1. High-Tech Institute of Xi’an, Xi’an 710025, China

Abstract

Change detection (CD) is an important research topic in remote sensing, which has been applied in many fields. In the paper, we focus on the post-processing of difference images (DIs), i.e., how to further improve the quality of a DI after the initial DI is obtained. The importance of DIs for CD problems cannot be overstated, however few methods have been investigated so far for re-processing DIs after their acquisition. In order to improve the DI quality, we propose a global and local graph-based DI-enhancement method (GLGDE) specifically for CD problems; this is a plug-and-play method that can be applied to both homogeneous and heterogeneous CD. GLGDE first segments the multi-temporal images and DIs into superpixels with the same boundaries and then constructs two graphs for the DI with superpixels as vertices: one is the global feature graph that characterizes the association between the similarity relationships of connected vertices in the multi-temporal images and their changing states in a DI, the other is the local spatial graph that exploits the change information and contextual information of the DI. Based on these two graphs, a DI-enhancement model is built, which constrains the enhanced DI to be smooth on both graphs. Therefore, the proposed GLGDE can not only smooth the DI but also correct the it. By solving the minimization model, we can obtain an improved DI. The experimental results and comparisons on different CD tasks with six real datasets demonstrate the effectiveness of the proposed method.

Funder

National Natural Science Foundation of China

Natural Science Basic Research Plan in Shaanxi Province of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3