Analysis of Interaction and Flow Pattern of Multiple Bubbles in Shear-Thinning Viscoelastic Fluids

Author:

He Hongbin1,Liu Zhuang2,Ji Jingbo2,Li Shaobai2

Affiliation:

1. School of Aero-Engine, Shenyang Aerospace University, Shenyang 110136, China

2. School of Energy and Environment, Shenyang Aerospace University, Shenyang 110136, China

Abstract

A numerical study was conducted on the interaction of bubbles with different diameters and arrangements in shear-thinning viscoelastic fluids using OpenFOAM. The Volume of Fluid (VOF) method combined with the surface tension model was used to track the gas–liquid interface, and the rheological properties of the fluid were characterized with the Giesekus model. The numerical results are corresponded with the previous references, verifying the correctness of the simulation method. The influences of the initial bubble diameter, horizontal spacing, and arrangement on the motion state of three parallel bubbles were studied in detail. The flow pattern of the bubble rising was analyzed and compared with the motion state of parallel unequal double bubbles. As the diameter of the bubbles increases, the interaction among three equal size bubbles is changed from coalescence to detachment. Changing the diameter of one of the bubbles will significantly affect the movement of the larger diameter bubble, which is due to the enhancement in kinetic energy. The final state of some arrangement ways is consistent with the phenomenon of unequal double bubbles. The shear thinning effect, the velocity difference between bubbles, and the flow field around bubbles are considered the main reasons that decide the interaction between bubbles.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3