Load Forecasting for the Laser Metal Processing Industry Using VMD and Hybrid Deep Learning Models

Author:

Aksan Fachrizal1,Suresh Vishnu1ORCID,Janik Przemysław1,Sikorski Tomasz1ORCID

Affiliation:

1. Faculty of Electrical Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland

Abstract

Electric load forecasting is crucial for the metallurgy industry because it enables effective resource allocation, production scheduling, and optimized energy management. To achieve an accurate load forecasting, it is essential to develop an efficient approach. In this study, we considered the time factor of univariate time-series data to implement various deep learning models for predicting the load one hour ahead under different conditions (seasonal and daily variations). The goal was to identify the most suitable model for each specific condition. In this study, two hybrid deep learning models were proposed. The first model combines variational mode decomposition (VMD) with a convolutional neural network (CNN) and gated recurrent unit (GRU). The second model incorporates VMD with a CNN and long short-term memory (LSTM). The proposed models outperformed the baseline models. The VMD–CNN–LSTM performed well for seasonal conditions, with an average RMSE of 12.215 kW, MAE of 9.543 kW, and MAPE of 0.095%. Meanwhile, the VMD–CNN–GRU performed well for daily variations, with an average RMSE value of 11.595 kW, MAE of 9.092 kW, and MAPE of 0.079%. The findings support the practical application of the proposed models for electrical load forecasting in diverse scenarios, especially concerning seasonal and daily variations.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3