Numerical Investigations for Vibration and Deformation of Power Transformer Windings under Short-Circuit Condition

Author:

Wang Jiawei1,Xing Yijing1,Ma Xikui1,Zhao Zhiwei1,Yang Lihui1

Affiliation:

1. State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

The analysis of the dynamic process of winding destabilization under sudden short-circuit conditions is of great importance to accurately assess the short-circuit resistance of power transformers. Based on magneto-solid coupling, an axisymmetric model of the transformer and a 3D multilayer model of the transformer considering the support components are established, respectively, and the short-circuit electromagnetic force (EF) is simulated by using the finite element method. It is concluded that the middle layer of the winding is subjected to the larger radial EF, while the axial EF has a greater effect on the layers at both ends. Moreover, the impression of the preload force, aging temperatures, and the area share of spacers on the vibration and deformation of windings are studied under short-circuit conditions. The overall distribution of plastic strain and residual stress in the winding is symmetrical, and the maximum values occur in the lower region of the middle of the winding. Finally, considering the material properties of disks and insulating components, the cumulative effect of plastic deformation under multiple successive short-circuit shocks is calculated. Compared with the traditional axisymmetric model of transformer, the three-dimensional multilayer model of the transformer established in this paper is more suitable for the actual winding structure and the obtained results are more accurate.

Funder

State Grid Anhui Electric Power Co., Ltd. Electric Power Science Research Institute

Natural Science Basic Research Program of Shaanxi

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3