Hydrogen as Short-Term Flexibility and Seasonal Storage in a Sector-Coupled Electricity Market

Author:

Loschan Christoph1ORCID,Schwabeneder Daniel1,Maldet Matthias1ORCID,Lettner Georg1,Auer Hans1ORCID

Affiliation:

1. Energy Economics Group, Technische Universität Wien, 1040 Vienna, Austria

Abstract

The rapid expansion of renewable energies has the potential to decarbonize the electricity supply. This is more challenging in difficult-to-electrify sectors. The use of hydrogen provides a massive potential for this issue. However, expanding hydrogen production increases electricity demand while providing additional flexibility to the electricity market. This paper mainly aims to analyze the economic effects of this sector coupling between the European electricity and national hydrogen markets. The developed energy market model jointly considers both markets to reach an overall welfare optimum. A novel modeling approach allows the interaction of these markets without the need for several iterative optimization runs. This allows for a detailed analysis of various market participants’ changes in consumer and producer surpluses. The optimization is conducted in 13 connected Central European countries to account for various power plant fleets, generation mixes, and electricity prices. Results show an overall welfare increase of EUR 4 to 28 billion in 2030 and an EUR 5 to 158 billion increase in 2040. However, there is a surplus shift from consumers to producers. The consumer surplus is reduced by up to EUR 44 billion in 2030 and EUR 60 billion while producers benefit to achieve the overall welfare benefits. The reduction of consumer surplus changes if significant price peaks occur. Fuel cell applications can avoid these price peaks, resulting in a surplus shift from thermal power plants to consumers. Hence, consumer surplus can increase by up to EUR 146 billion in the respective 2040 scenarios. Pink hydrogen accounts for a sizable portion of total hydrogen production, up to 58 percent in 2030 and up to 30 percent in 2040. As a result, nuclear power plants that are nearly entirely allocated in France stand to benefit greatly from this sector coupling. Additional efforts could be made to address the link between hydrogen and natural gas prices. Furthermore, the potential for cross-border hydrogen trade and the implementation of national legal and regulatory frameworks could be assessed.

Funder

Climate and Energy Fund

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3