Abstract
This paper presents an improved procedure for conducting diagnostics tests on corrosion in reinforced concrete structures. This method consists in drilling cylindrical concrete cores with fragments of secondary steel reinforcement (e.g., spacer bars, stirrups, binders) from the selected areas of the structure. Then, a three-electrode system is arranged on those cylindrical cores under laboratory conditions. The fragment of steel rebar with concrete is used as the working electrode. Using the counter electrode in the form of a patented conductive coating applied on the core side wall with painting techniques and the graphite reference electrode placed in an opening made in the core near the reinforcement was the novelty of this method. Following the procedure, the occurrence of minimum and maximum corrosion rates in concrete is simulated in the climate chamber after determining, on the basis of historical weather data, extreme combinations of temperature, and relative humidity for a given structure. This method was verified in the diagnostics testing of two large reinforced concrete tanks for fresh water, and cement storage silos.
Funder
Silesian University of Technology
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献