A Deformation Force Monitoring Method for Aero-Engine Casing Machining Based on Deep Autoregressive Network and Kalman Filter

Author:

Guo Haonan,Li YingguangORCID,Liu Changqing,Ni Yang,Tang Kai

Abstract

Aero-engine casing is a kind of thin-walled rotary part for which serious deformation often occurs during its machining process. As deformation force is an important physical quantity associated with deformation, the utilization of deformation force to control the deformation has been suggested. However, due to the complex machining characteristics of an aero-engine casing, obtaining a stable and reliable deformation force can be quite difficult. To address this issue, this paper proposes a deformation force monitoring method via a pre-support force probabilistic decision model based on deep autoregressive neural network and Kalman filter, for which a set of sophisticated clamping devices with force sensors are specifically developed. In the proposed method, the pre-support force is determined by the predicted value of the deformation force and the equivalent flexibility of the part, while the measurement errors and the reality gaps are reduced by Kalman filter via fusing the predicted and measured data. Both computer simulation and physical machining experiments are carried out and their results give a positive confirmation on the effectiveness of the proposed method. The results are as follows. In the simulation experiments, when the confidence is 84.1%, the success rate of deformation force monitoring is increased by about 30% compared with the traditional approach, and the final impact of clamping deformation of the proposed method is less than 0.003 mm. In the real machining experiments, the results show that the calculation error of deformation by the proposed method based on monitoring the deformation force is less than 0.008 mm.

Funder

National Natural Science Foundation of China

National Science Fund of China for Distinguished Young Scholars

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3