Road Segmentation and Environment Labeling for Autonomous Vehicles

Author:

Chen Rung-ChingORCID,Saravanarajan Vani Suthamathi,Chen Long-ShengORCID,Yu HuiORCID

Abstract

In autonomous vehicles (AVs), LiDAR point cloud data are an important source to identify various obstacles present in the environment. The labeling techniques that are currently available are based on pixel-wise segmentation and bounding boxes to detect each object on the road. However, the Avs’ decision on motion control and trajectory path planning depends on the interaction among the objects on the road. The ability of the Avs to understand the moving and non-moving objects is the key to scene understanding. This paper presents a novel labeling method to combine moving and non-moving objects. This labeling technique is named relational labeling. Autoencoders are used to reduce the dimensionality of the data. A K-means model provides pseudo labels by clustering the data in the latent space. Each pseudo label is then converted into unary and binary relational labels. These relational labels are used in the supervised learning methods for labeling and segmenting the LiDAR point cloud data. A backpropagation network (BPN), along with traditional gradient descent-based learning methods, are used for labeling the data. Our study evaluated the labeling accuracy of two as well as three layers of BPN. The accuracy of the two-layer BPN model was found to be better than the three-layer BPN model. According to the experiments, our model showed competitive accuracy of 75% compared to the weakly supervised techniques in a similar area of study, i.e., the accuracy for S3DIS (Area 5) is 48.0%.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference54 articles.

1. Machine Learning on Small UAVs

2. A Survey of the State-of-the-Art Localization Techniques and Their Potentials for Autonomous Vehicle Applications

3. Euro-PVI: Pedestrian Vehicle Interactions in Dense Urban Centers. 2021. pp. 6404–6413http://arxiv.org/abs/2106.12442

4. A2D2: Audi Autonomous Driving Dataset;Geyer;arXiv,2020

5. OctNet: Learning Deep 3D Representations at High Resolutions

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automatic Segmentation Labeling for Autonomous Driving Datasets;2023 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia);2023-10-23

2. Car crash detection using ensemble deep learning;Multimedia Tools and Applications;2023-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3