Abstract
In this article, we propose a new approach utilizing diffuse optical tomography (DOT) to monitoring the changes in tissues’ optical properties and temperature in high-intensity focused ultrasound (HIFU) therapy. By correlating the tissue reduced scattering coefficient (μs’) reconstructed by DOT and the temperature measured by a thermocouple, the quantitative relationship between μs’ and temperature in HIFU treatment was explored. The experiments were conducted using porcine and chicken breast muscle tissues during HIFU; the temperature of each tissue sample was recorded using a thermocouple. To incorporate the temperature dependency of tissue optical properties, both polynomial and exponential models were utilized to fit the experimental data. The results show that the change of μs’ during HIFU treatment could be detected in real-time using DOT and that this change of μs’ is quantitatively correlated with tissue temperature. Furthermore, while the tissue-type-dependent relationship between μs’ and temperature is non-linear in nature, it is stable and repeatable. Therefore, our approach has the potential to be used to predict temperature of tissue during HIFU treatment.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献