Brain Tumor Analysis Using Deep Learning and VGG-16 Ensembling Learning Approaches

Author:

Younis AyeshaORCID,Qiang Li,Nyatega Charles OkandaORCID,Adamu Mohammed JajereORCID,Kawuwa Halima BelloORCID

Abstract

A brain tumor is a distorted tissue wherein cells replicate rapidly and indefinitely, with no control over tumor growth. Deep learning has been argued to have the potential to overcome the challenges associated with detecting and intervening in brain tumors. It is well established that the segmentation method can be used to remove abnormal tumor regions from the brain, as this is one of the advanced technological classification and detection tools. In the case of brain tumors, early disease detection can be achieved effectively using reliable advanced A.I. and Neural Network classification algorithms. This study aimed to critically analyze the proposed literature solutions, use the Visual Geometry Group (VGG 16) for discovering brain tumors, implement a convolutional neural network (CNN) model framework, and set parameters to train the model for this challenge. VGG is used as one of the highest-performing CNN models because of its simplicity. Furthermore, the study developed an effective approach to detect brain tumors using MRI to aid in making quick, efficient, and precise decisions. Faster CNN used the VGG 16 architecture as a primary network to generate convolutional feature maps, then classified these to yield tumor region suggestions. The prediction accuracy was used to assess performance. Our suggested methodology was evaluated on a dataset for brain tumor diagnosis using MR images comprising 253 MRI brain images, with 155 showing tumors. Our approach could identify brain tumors in MR images. In the testing data, the algorithm outperformed the current conventional approaches for detecting brain tumors (Precision = 96%, 98.15%, 98.41% and F1-score = 91.78%, 92.6% and 91.29% respectively) and achieved an excellent accuracy of CNN 96%, VGG 16 98.5% and Ensemble Model 98.14%. The study also presents future recommendations regarding the proposed research work.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3