Research on PM2.5 Concentration Prediction Based on the CE-AGA-LSTM Model

Author:

Wu Xiaoxuan,Zhang Chen,Zhu Jun,Zhang Xin

Abstract

The PM2.5 index is an important basis for measuring the degree of air pollution. The accurate prediction of PM2.5 concentration has an important guiding role in air pollution prevention and control. The Pearson Correlation Coefficient (PCC) is a common index used to mine the correlation between meteorological factors and other air pollutants. However, this index cannot be used to mine non-linear correlations, nor can it quantitatively analyze the weight of each related attribute. In order to accurately explore the correlation between meteorological factors and other air pollutants and to achieve an accurate prediction of PM2.5 concentration, this paper proposes a short- and long-time memory (LSTM) network prediction model based on Copula entropy (CE) and the adaptive genetic algorithm (AGA). By calculating CE, the correlation between multiple meteorological factors and various atmospheric pollutants and PM2.5 was analyzed. The correlation of influencing factors was sorted according to the size of the correlation coefficients. The contribution rate of meteorological factors and atmospheric pollutants to PM2.5 concentration was determined, used as the weight of each influencing factor and predicted as the input data of the prediction model. In this paper, a long- and short-term memory network (LSTM) suitable for time series data was selected as the prediction model, while the selection of model parameters was taken into account, and the relevant parameters were sought by an adaptive genetic algorithm (AGA). The air pollutant data and meteorological data of Beijing from 1 January 2016 to 31 December 2016 were selected, and MAE and RMSE were used as evaluation indexes. By comparing the experimental results of the CE-AGA-LSTM with those of other eight prediction models (LR, SVM, RF, ARMA, ST-LSTM, LSTM, CE-LSTM and CE-RNN), we found that among the models, the CE-AGA-LSTM model provided the lowest MAE and RMSE values, i.e., 14.5 and 21.88, respectively. At the same time, the loss rate and accuracy of the CE-AGA-LSTM model were evaluated, and the experimental results verified the validity of the model.

Funder

the Universities Natural Science Research Project of Anhui Provincial

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference28 articles.

1. Particulate Matter Air Pollution and Cardiovascular Disease

2. Air Pollution Forecasts: An Overview

3. Correlation analysis of PM2.5 and air pollutants in Harbin City based on PLS1;Yu;J. Ecol. Environ.,2014

4. Evaluating the Contribution of PM2.5 Precursor Gases and Re-Entrained Road Emissions to Mobile Source PM2.5 Particulate Matter Emissions;Hodan,2004

5. PM2.5 Forecasting Model Using a Combination of Deep Learning and Statistical Feature Selection

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3