Skeletal Muscles of Patients Infected with SARS-CoV-2 Develop Severe Myofiber Damage upon One Week of Admission on the Intensive Care Unit

Author:

Stevens SjoerdORCID,Hendrickx Paul,Snijders TimORCID,Lambrichts IvoORCID,Stessel BjörnORCID,Dubois Jasperina,van Loon Luc J. C.ORCID,Vandenabeele Frank,Agten AnoukORCID

Abstract

Many critically ill patients infected with SARS-CoV-2 have been submitted to an intensive care unit (ICU). Patients with a SARS-CoV-2 infection that survive critical illness are confronted with months of physical impairments. To maximize recovery, it is important to understand the musculoskeletal involvement in critically ill patients infected with SARS-CoV-2. The aim of the present study was to assess the myocellular changes in SARS-CoV-2 patients that occur throughout the first week of ICU admission. In n = 22 critically ill patients infected with SARS-CoV-2, a biopsy sample from the vastus lateralis muscle was obtained at day 1–3 and day 5–8 following ICU admission. Fluorescence microscopy was used to assess type I and type II muscle fiber size and distribution, myonuclear content, and muscle tissue capillarization. Transmission electron microscopy was used to support quantitative data at an ultrastructural level. Changes in type I and type II muscle fiber size showed large inter-individual variation. The average change in type I fiber size was +309 ± 1834 µm2, ranging from −2129 µm2 (−31%) to +3375 µm2 (+73%). The average change in type II fiber size was −224 ± 1256 µm2, ranging from −1410 µm2 (−36%) to +2592 µm2 (+48%). Ultrastructural observations showed myofibrillar and hydropic degeneration, and fiber necrosis. This study shows that ICU patients admitted with SARS-CoV-2 suffer from substantial muscle fiber damage during ICU admission. These results are a call for action towards more specialized rehabilitation programs for patients admitted to the ICU with SARS-CoV-2 infection.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3