Assisted-Driven Design of Customized Maintenance Plans for Industrial Plants

Author:

Rodríguez-Padial Néstor,Marín Marta M.,Domingo RosarioORCID

Abstract

Current production systems that respond to market demands with high rates of production change and customization use complex systems. These systems are machines with a high capacity for communication, sensing and self-diagnosis, although they are susceptible to failures, breakdowns and a loss of reliability. The amount of data they provide as a productive system and, individually, as a machine can be treated to improve customized maintenance plans. The objective of this work, with an operational scope, is to collect and exploit the knowledge acquired in the industrial plant on failures and breakdowns based on its historical data. The acquisition of the aforementioned data is channeled through the human intellectual capital of the work groups formed for this purpose. Once this knowledge is acquired and available in a worksheet format according to the Reliability-Centered Maintenance (RCM) methodology, it is implemented using Case-Based Reasoning algorithms in a Java application developed for this purpose to carry out the process of RCM, accessing a base of similar cases that can be adapted. This operational definition allows for the control of the maintenance function of an industrial plant in the short term, with a weekly horizon, to design a maintenance plan adjusted to the reality of the plant in its current operating context, which may differ greatly from the originally projected plan or from any other plan caused by new production requirements. This new plan designed as such will apply changes to the equipment, which make up the production system, as a consequence of the adaptation to the changing market demand. As a result, a computer application has been designed, implemented and validated that allows, through the incorporation of RCM cases already successfully carried out on the productive system of the plant, for the development of a customized maintenance plan through an assistant, which, in a conductive way, guides the plant maintenance engineer through their design process, minimizing human error and design time and leveraging existing intellectual capital.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3