Numerical Study on the Yaw Control for Two Wind Turbines under Different Spacings

Author:

Xin Zhiqiang,Liu Songyang,Cai Zhiming,Liao Shenghai,Huang Guoqing

Abstract

In this study, the large eddy simulation method and the actuator line model are used to investigate the wake redirection of two turbines. Different turbine spacings and yaw-based control of the upstream turbine are considered. The effects of yaw angle and turbine spacing on the output power of two turbines are comprehensively analyzed, and the physical mechanisms of the wake deficit, deflection and interaction are revealed from the distributions of the wake velocity, turbulence intensity and the structures of wake vortices. The results show that the overall power of two turbines is related to the yaw angle of the upstream turbine and the spacing between two turbines. We find yaw angle is the dominant factor in the total power improvement compared to turbine spacing. Still, a large yaw angle causes significant power fluctuations of the downstream turbine. The deficit of wake velocity and the change of output power are determined by the characteristics of the wake flow field, which the yaw control regulates.

Funder

National Natural Science Foundation of China

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference32 articles.

1. Flow Structure and Turbulence in Wind Farms

2. Wind-Turbine and Wind-Farm Flows: A Review

3. A simple model for cluster efficiency;Katic;Proceedings of the European Wind Energy Association Conference and Exhibition,1986

4. Calculating the flowfield in the wake of wind turbines

5. Wind fields in wakes;Larsen;Proceedings of the 1996 European Union Wind Energy Conference,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3