Impact of Ultraviolet Radiation on the Pigment Content and Essential Oil Accumulation in Sweet Basil (Ocimum basilicum L.)

Author:

Semenova Natalya A.ORCID,Smirnov Alexandr A.ORCID,Ivanitskikh Alina S.,Izmailov Andrey Yu.,Dorokhov Alexey S.,Proshkin Yuri A.ORCID,Yanykin Denis V.ORCID,Sarimov Ruslan R.ORCID,Gudkov Sergey V.ORCID,Chilingaryan Narek O.ORCID

Abstract

In this study, we investigated the effects of additional ultraviolet radiation (UV) on the main growth fluorescent lamp light on pigment content and essential oil accumulation in sweet basil (Ocimum basilicum L.). Three different UV light sources from light-emitting diodes and discharge lamps, which emit UV in the UV-A (315–400 nm), UV-B (280–315 nm) and UV-C (100–280 nm) ranges, were tested for basil plant growing. The plants, growing under additional UV-A and UV-B from mercury lamps, on the 60th growing day were higher than control plants by 90% and 53%, respectively. The fresh leaf mass of the UV-A irradiated basil plants was 2.4-fold higher than the control plant mass. The dry mass/fresh mass ratio of the UV-A and UV-B irradiated plants was higher by 45% and 35% in comparison to the control plants. Leaf area was increased by 40% and 20%, respectively. UV-C affected the anthocyanin content most strongly, they increased by 50%, whereas only by 27% and 0% under UV-A and UV-B. Any UV addition did not affect the essential oil total contents but altered the essential oil compositions. UV-A and UV-B increased the linalool proportion from 10% to 20%, and to 25%, respectively, in contrast to UV-C, which reduced it to 3%. UV-C induced the eugenol methyl ether accumulation (17%) and inhibited plant growth. Moreover, UV increased the proportion of α-guaiene, β-cubebene and α-bulnesene and decreased the proportion of sabinene and fenchone. Thus, we concluded that UV (except UV-C) used jointly with main light with PPFD 120 ± 10 μmol photons·m−2·s−1 for sweet basil cultivation may be justified to stimulate basil growth and optimize the essential oil accumulation.

Funder

The Ministry of Education and Science of the Russian Federation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3