Optimal Design of Fluid Flow and Heat Transfer in Pipe Jackets Having Bow Cross-Sections

Author:

Li Weicong,Yin Xia,Li Huifang,Qian Caifu,Wu Zhiwei

Abstract

Pipe jackets are widely used in engineering as a component for heating or cooling reactors or other equipment. In this paper, fluid flow and heat transfer performances in straight or helical pipes having bow cross-sections with the central angle α in the range of 90–180° were numerically simulated using water as the medium under turbulent flow conditions. The results show that, under the same volume flow rate, the bow cross-sectional pipe with α less than 180° can enhance heat transfer and shows better comprehensive heat transfer performance compared with the half-pipe with α being 180°. As a result, less heat exchange surface (or the weight) of the bow cross-sectional pipe is needed for transferring the same amount of heat. Specifically, for the helical pipe having the bow cross-section with α being 90°, the weight of the pipe can be reduced by about 80%. In order to facilitate the engineering design of bow cross-sectional pipe jackets, correlation formulas for Nu and f of the whole straight pipe and the helical pipe were modified to include the influence of the central angle α of the bow cross-sections.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference24 articles.

1. Finite element stress analysis of vessel with half-pipe jacket;Gai;J. Wuhan Inst. Technol.,2011

2. The Development and Application of the Spiral Semicircle Double-Layered Reactor;Deng;Press. Vessel. Technol.,2001

3. Flow stratification of supercritical CO2 in a heated horizontal pipe

4. A numerical study on heat transfer enhancement and flow structure in enhanced tube with cross ellipsoidal dimples

5. Modeling & dynamic studies of heat transfer cooling of liquid in half-coil jackets

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of flow and heat transfer in bend pipe with different smoothing;International Communications in Heat and Mass Transfer;2024-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3