Numerical Investigation of Plastic Deformation of Flat Plate for Slamming Impact by Coupled Eulerian–Lagrangian Method

Author:

Park Young ILORCID,Park Su-Hyun,Kim Jeong-HwanORCID

Abstract

Ships and offshore structures are subjected to impact loads, such as slamming and sloshing. High impact pressures can cause permanent hull deformation by a single impact event. In addition, significant fatigue damage can be accumulated via repeated impact pressures. In this study, the plastic deformation behavior of flat plates under slamming impact is numerically investigated using a coupled Eulerian–Lagrangian method. The dynamic impact pressure of the flat plates by weight and drop height is investigated under the assumption of viscous and compressible fluids. To evaluate the plastic deformation of the plate, contact between water and the plate is removed after a certain duration after dropping, and then the remaining deformation is measured. Optimized finite element models for drop simulations are selected via a mesh sensitivity study, and the simulation results are calibrated and compared with experimental data. Results of the simulation and the experiment show good agreement in general in terms of deflection range. However, because the initial condition of the plate is not reflected in the simulation, some discrepancy is observed in maximum deflections. Finally, a discussion is presented for a more accurate fluid impact analysis model based on the comparison results with the experimental data.

Funder

Dong-A University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3