Experimental Research on Reducing Flow-Induced Cavity Resonance with a Narrowband Active Noise Control System

Author:

An Fengyan,Li Hao,Zhang Xilong,Sun Chengpu,Liu Bilong

Abstract

In this paper, active control of flow-induced cavity resonance noise is addressed. A hybrid numerical method is presented to predict the resonance frequency and, instead of traditional active flow control, a narrowband active noise control system is utilized to suppress the resonance. A duct system is built up at low Mach numbers and experiments are carried out to validate the proposed methods. The results have shown that the resonance frequency could be predicted with 1.5% errors and the flow-induced narrowband noise could be effectively suppressed at both the fundamental frequency and its first harmonic. More than 10 dB global attenuations could be achieved for the fundamental resonance frequency without noise enhancements at other frequencies. Further, it was also found that the optimal reference frequency of the narrowband active noise control system could be largely biased from the original resonance frequency, which indicates a nonlinear mechanism of the control system.

Funder

National Natural Science Foundation of China

the Taishan Scholar Program of Shandong

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3