Fatigue Life Analysis of Main Reducer Gears for Battery Electric Bus Considering Regenerative Braking

Author:

Du JinfuORCID,Wu Xingrong,Mao Jin

Abstract

The braking mode of the battery electric urban bus (BEUB) is different from the friction braking of the traditional fuel bus due to the introduction of a regenerative braking system. The intervention of electromagnetic braking changes the working condition of the main reducer gears, thus affecting their service lives. Based on the Urban Dynamometer Driving Schedule (UDDS) driving cycle condition, the stress–time history of the main reducer gears is calculated. Combined with the static analysis results and the S-N curve of the material, the fatigue lives of the main reducer gears considering electromagnetic braking and traditional friction braking are analyzed. The reverse torque on the driving axle during electromagnetic braking is taken into account to be closer to the real situation. Results show that, under the electromagnetic braking mode, the bending fatigue lives of the tooth root on the convex and concave surfaces of the pinion are 78.5% and 78.9% of that under the traditional friction braking mode, respectively, while the contact fatigue life of the pinion working surface is 78.2% of that under the friction braking mode, indicating that the introduction of the regenerative braking system into the BEUB will cause a significant reduction in the service life of the main reducer gears. This study provides a high-precision fatigue life calculation method for the BEUB main reducer gears and the accurate prediction of their remaining life.

Funder

National Natural Science Foundation of China

Natural Science Basic Research Program of Shaanxi

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference26 articles.

1. Analysis of development status and prospect new energy vehicles;Zhang;Automob. Appl. Technol.,2016

2. Domestic and foreign new energy vehicle development technology path;Zhang;Int. Core J. Eng.,2022

3. Estimation of the Energy Consumption of Battery Electric Buses for Public Transport Networks Using Real-World Data and Deep Learning

4. Research on regenerative braking control strategy of pure electric bus;Li;Mechinery Des. Manuf.,2017

5. Research on Regenerative Braking of Pure Electric Mining Dump Truck

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3