An Efficient UV-C Disinfection Approach and Biological Assessment Strategy for Microphones

Author:

Vignali Valentina,Hoff Tobi,de Vries-Idema Jacqueline J.,Huckriede Anke L. W.ORCID,van Dijl Jan MaartenORCID,van Rijn PatrickORCID

Abstract

Hygiene is a basic necessity to prevent infections, and though it is regarded as vital in general, its importance has been stressed again during the pandemic. Microbes may spread through touch and aerosols and thereby find their way from host to host. Cleaning and disinfection of possibly contaminated surfaces prevents microbial spread, thus reducing potential illnesses. One item that is used by several people in a way that promotes close contact by touch and aerosol formation is the microphone. A microphone is a complex piece of equipment with respect to shape and various materials used to fabricate it and, hence, its disinfection is challenging. A new device has been developed to efficiently sterilize microphones by using UV-C and a biological assessment has been done to identify its efficacy and translatability. For this investigation, a contamination procedure was developed by using M13 bacteriophage as a model to illustrate the effectiveness of the disinfection. The susceptibility to UV-C irradiation of M13 in solution was compared to that of the PR8 H1N1 influenza virus, which has a similar UV-C susceptibility as SARS-CoV-2. It was found that 10 min of UV-C treatment reduced the percentage of infectious M13 by 99.3% based on whole microphone inoculation and disinfection. UV-C susceptibility of M13 and influenza in suspension were found to be very similar, indicating that the microphone sterilization method and device function are highly useful and broadly applicable.

Funder

European Union

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3