Nonlinear Impact Force Reduction of Layered Polymers with the Damage-Trap Interface

Author:

Islam Md SharifulORCID,Xu Luoyu RoyORCID

Abstract

In this paper, a damage-trap material interface design of polymeric materials was proposed. Towards that, baseline and layered Polymethyl methacrylate (PMMA) and Polycarbonate specimens were fabricated with a Loctite 5083 adhesive layer between the interfaces. Out-of-plane impact experiments were conducted and found that the maximum impact force was reduced in layered polymers with so-called “damage-trap material interfaces”. At the impact energy of 20 J, the maximum impact force of the layered PMMA specimens with the 5083 adhesive was reduced by 60% compared to the identical specimens without any adhesive bonding. For the layered Polycarbonate specimens with the 5083 adhesive bonding, the maximum impact force was reduced by 20% and energy absorption was increased by 130%. Simplified contact mechanics analysis showed that the low Young’s modulus of the 5083 adhesive layers was a key parameter in reducing impact force and damage. Therefore, a simple and effective way to design layered materials with improved impact resistance was proposed.

Funder

Office of Naval Research

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3