Tunable Electromagnetically Induced Transparent Window of Terahertz Metamaterials and Its Sensing Performance

Author:

Wu Zhenlin,An Peiyao,Ding MenghanORCID,Qi Yanan,Zhang Lin,Han Shaoshuai,Lian Di,Chen Changming,Yang XinORCID

Abstract

The electromagnetically induced transparency effect of terahertz metamaterials exhibits excellent modulation and sensing properties, and it is critical to investigate the modulation effect of the transparent window by optimizing structural parameters. In this work, a unilateral symmetrical metamaterial structure based on the cut-wire resonator and the U-shaped split ring resonator is demonstrated to achieve electromagnetically induced transparency-like (EIT-like) effect. Based on the symmetrical structure, by changing the structural parameters of the split ring, an asymmetric structure metamaterial is also studied to obtain better tuning and sensing characteristics. The parameters for controlling the transparent window of the metamaterial are investigated in both passive and active modulation modes. In addition, the metamaterial structure based on the cut-wire resonator, unilateral symmetric and asymmetric configurations are investigated for high performance refractive index sensing purposes, and it is found that the first two metamaterial structures can achieve sensitivity responses of 63.6 GHz/RIU and 84.4 GHz/RIU, respectively, while the asymmetric metamaterial is up to 102.3 GHz/RIU. The high sensitivity frequency response of the proposed metamaterial structures makes them good candidates for various chemical and biomedical sensing applications.

Funder

Zhenlin Wu

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3