Physically Consistent Implementation of the Mixture Model for Modelling Nanofluid Conjugate Heat Transfer in Minichannel Heat Sinks

Author:

Ali Abdullah MasoudORCID,Angelino MatteoORCID,Rona AldoORCID

Abstract

As much as two-phase mixture models resolve more physics than single-phase homogeneous models, their inconsistent heat transfer predictions have limited their use in modelling nanofluid cooled minichannel heat sinks. This work investigates, addresses, and solves this key shortcoming, enabling reliable physically sound predictions of minichannel nanoflows, using the two-phase mixture model. It does so by applying the single-phase and the two-phase mixture model to a nine-passages rectangular minichannel, 3 mm deep and 1 mm wide, cooled by a 1% by volume suspension of Al2O3 nanoparticles in water, over the Reynolds number range 92 to 455. By varying the volume fraction αnf of the second phase between 2% and 50%, under a constant heat flux of 16.67 W/cm2 and 30 Celsius coolant inflow, it is shown that the two-phase mixture model predicts heat transfer coefficient, pressure loss, friction factor, exergy destruction rate, exergy expenditure rate, and second law efficiency values converging to the single-phase model ones at increasing αnf. A two-phase mixture model defined with 1% second phase volume fraction and 100% nanoparticles volume fraction in the second phase breaks the Newtonian fluid assumption within the model and produces outlier predictions. By avoiding this unphysical regime, the two-phase mixture model matched experimental measurements of average heat transfer coefficient to within 1.76%. This has opened the way for using the two-phase mixture model with confidence to assess and resolve uneven nanoparticle dispersion effects and increase the thermal and mass transport performance of minichannels.

Funder

The Libyan Ministery of Higher Education and Scientific Research

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3